On The Bounded Oscillation of Certain Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients
- Da-Xue Chen
 - Guang-Hui Liu
 
Abstract
We investigate the bounded oscillation of the second-order nonlinear neutral delay dynamic equation with oscillating coefficients  \[
\Big(r(t)\Big|\big[x(t)+p(t)x(\tau(t))\big]^\Delta\Big|^{\alpha-1}\big[x(t)+p(t)x(\tau(t))\big]^\Delta\Big)^\Delta+q(t)|x(t)|^{\beta-1}x(t)=0
 \]
 on an arbitrary time scale $\mathbb{T}$, where $p$ is an oscillating function defined on $\mathbb{T}$ and $\alpha,\beta>0$ are constants, and obtain several sufficient conditions for the oscillation of all bounded solutions of the equation when $\beta>\alpha, \beta=\alpha$ and $\beta<\alpha$, respectively. Our results extend and complement some known results where $p(t)\equiv 0$ and $\alpha,\beta$ are quotients of odd positive integers.
-  Full Text: 
 PDF 
                            
                     - DOI:10.5539/jmr.v3n2p193
 
Index
- ACNP
 - Aerospace Database
 - BASE (Bielefeld Academic Search Engine)
 - Civil Engineering Abstracts
 - CNKI Scholar
 - DTU Library
 - EconPapers
 - Elektronische Zeitschriftenbibliothek (EZB)
 - EuroPub Database
 - Google Scholar
 - Harvard Library
 - IDEAS
 - Infotrieve
 - JournalTOCs
 - MathGuide
 - MathSciNet
 - Open policy finder
 - RePEc
 - ResearchGate
 - Scilit
 - Technische Informationsbibliothek (TIB)
 - The Keepers Registry
 - UCR Library
 - Universe Digital Library
 - WorldCat
 
Contact
- Sophia WangEditorial Assistant
 - jmr@ccsenet.org