Some More Noiseless Coding Theorem on Generalized R-Norm Entropy
- Arun Choudhary
- Satish Kumar
Abstract
A parametric mean length is defined as the quantity$L_{R}^{\beta}=\frac{R}{R-1}\left[1-\frac{\sum_{i=1}^{N}p_{i}^{\beta}D^{-n_{i}\left(\frac{R-1}{R}\right)}}{\sum_{j=1}^{N}p_{j}^{\beta}}\right]$
\noindent where $R>0\left(\ne 1\right),\beta >0,\, p_{i} >0,\, \sum p_{i} =1,\, \, i=1,2,\dots,N.$ This being
the mean length of code words. Lower and upper bounds for $L_{R}^{\beta}$ are derived in terms of R-norm
information measure for the incomplete power distribution.
- Full Text: PDF
- DOI:10.5539/jmr.v3n1p125
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org