New Types of Fuzzy Filter on Lattice Implication Algebras
- Yi Liu
- Yang Xu
Abstract
Extending the {\it belongs} to ($\in$) relation and {\itquasi-coincidence with}($q$) relation between fuzzy points and a fuzzy subsets, the concept of $(\alpha, \beta)$-fuzzy filters and $(\overline{\alpha}, \overline{\beta})$-fuzzy filters of lattice implication algebras are introduced, where
$\alpha,\beta\in\{\in_{h},q_{\delta},\in_{h}\vee
q_{\delta},\in_{h}\wedge q_{\delta}\}$,
$\overline{\alpha},\overline{\beta}\in\{\overline{\in_{h}},\overline{q_{\delta}},\overline{\in_{h}}\vee
\overline{q_{\delta}},\overline{\in_{h}}\wedge
\overline{q_{\delta}}\}$ but $\alpha\neq \in_{h}\wedge q_{\delta}$, $\overline{\alpha}\neq\overline{ \in_{h}}\wedge
\overline{q_{\delta}}$, respectively, and some related properties are investigated. Some equivalent characterizations of these generalized fuzzy filters are derived. Finally, the relations among these generalized fuzzy filters are discussed. Special attention to $(\in_{h},\in_{h}\vee q_{\delta})$-fuzzy filter and $(\overline{\in_{h}},\overline{\in_{h}}\vee\overline{q_{\delta}})$-fuzzy filter are generalizations of $(\in,\in\vee q)$-fuzzy filter and
$(\overline{\in},\overline{\in}\vee \overline{q})$-fuzzy filter,
respectively.
- Full Text: PDF
- DOI:10.5539/jmr.v3n1p57
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org