Generalization of $\mathcal{U}$-Generator and $M$-Subgenerator Related to Category $\sigma[M]$
- Fitriani Fitriani
- Indah Wijayanti
- Budi Surodjo
Abstract
Let $\mathcal{U}$ be a non-empty set of $R$-modules. $R$-module $N$ is generated by $\mathcal{U}$ if there is an epimorphism from $\oplus_{\Lambda}U_{\lambda}$ to $N$, where $U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda$. $R$-module $M$ is a subgenerator for $N$ if $N$ is isomorphic to a submodule of an $M$-generated module. In this paper, we introduce a $\mathcal{U}_{V}$-generator, where $V$ be a submo\-dule of $\oplus_{\Lambda}U_{\lambda}$, as a generalization of $\mathcal{U}$-generator by using the concept of $V$-coexact sequence. We also provide a $\mathcal{U}_{V}$-subgenerator motivated by the concept of $M$-subgenerator. Furthermore, we give some properties of $\mathcal{U}_{V}$-generated and $\mathcal{U}_{V}$-subgenerated modules related to category $\sigma[M]$. We also investigate the existence of pullback and pushout of a pair of morphisms of $\mathcal{U}_{V}$-subgenerated modules. We prove that the collection of $\mathcal{U}_{V}$-subgenerated modules is closed under submodules and factor modules.- Full Text: PDF
- DOI:10.5539/jmr.v10n4p101
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org