Efficiency of MOMA-plus Method to Solve Some Fully Fuzzy L-R Triangular Multiobjective Linear Programs
- Abdoulaye Compaoré
- Kounhinir Somé
- Joseph Poda
- Blaise Somé
Abstract
In this paper, we propose a novel approach for solving some fully fuzzy L-R triangular multiobjective linear optimization programs using MOMA-plus method (Kounhinir, 2017). This approach is composed of two relevant steps such as the converting of the fully fuzzy L-R triangular multiobjective linear optimization problem into a deterministic multiobjective linear optimization and the applying of the adapting MOMA-plus method. The initial version of MOMA-plus method is designed for multiobjective deterministic optimization (Kounhinir, 2017) and having already been tested on the single-objective fuzzy programs (Abdoulaye, 2017). Our new method allow to find all of the Pareto optimal solutions of a fully fuzzy L-R triangular multiobjective linear optimization problems obtained after conversion. For highlighting the efficiency of our approach a didactic numerical example is dealt with and obtained solutions are compared to Total Objective Segregation Method proposed by Jayalakslmi and Pandia (Jayalakslmi 2014).- Full Text: PDF
- DOI:10.5539/jmr.v10n2p77
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org