High-order Filtered Schemes for the Hamilton-Jacobi Continuum Limit of Nondominated Sorting
- Warut Thawinrak
- Jeff Calder
Abstract
We investigate high-order finite difference schemes for the Hamilton-Jacobi equation continuum limit of nondominated sorting. Nondominated sorting is an algorithm for sorting points in Euclidean space into layers by repeatedly removing minimal elements. It is widely used in multi-objective optimization, which finds applications in many scientific and engineering contexts, including machine learning. In this paper, we show how to construct filtered schemes, which combine high order possibly unstable schemes with first order monotone schemes in a way that guarantees stability and convergence while enjoying the additional accuracy of the higher order scheme in regions where the solution is smooth. We prove that our filtered schemes are stable and converge to the viscosity solution of the Hamilton-Jacobi equation, and we provide numerical simulations to investigate the rate of convergence of the new schemes.- Full Text: PDF
- DOI:10.5539/jmr.v10n1p90
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org