Estimation of Causal Functional Linear Regression Models
- J.C.S. de Miranda
Abstract
We present a methodology for estimating causal functional linear models using orthonormal tensor product expansions. More precisely, we estimate the functional parameters $\alpha$ and $\beta$ that appear in the causal functional linear regression model:$$\mathcal{Y}(s)=\alpha(s)+\int_a^b\beta(s,t)\mathcal{X}(t)\mathrm{d}t+\mathcal{E}(s),$$ where $\mbox{supp } \beta \subset \mathfrak{T},$ and $\mathfrak{T}$ is the closed triangular region whose vertexes are $(a,a) , (b,a)$ and $(b,b).$ We assume we have an independent sample $\{ (\mathcal{Y}_k,\mathcal{X}_k) : 1\le k \le N, k\in \mathbb{N}\}$ of observations where the $\mathcal{X}_k $'s are functional covariates, the $\mathcal{Y}_k$'s are time order preserving functional responses and $\mathcal{E}_k,$ $1\le k \le N,$ is i.i.d. zero mean functional noise.- Full Text: PDF
- DOI:10.5539/jmr.v9n6p106
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org