The Convergence of Calderón Reproducing Formulae of Two Parameters in $L^p$, in $\mathscr S$ and in $\mathscr S'$
- Jiang-Wei Huang
- Kunchuan Wang
Abstract
The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same property as the one of approximate identity in many special function spaces. In this note, we use the idea of separation variables and atomic decomposition to extend single parameter to two-parameters and discuss the convergence of Calderón reproducing formulae of two-parameters in $L^p(\mathbb R^{n_1} \times \mathbb R^{n_2})$, in $\mathscr S(\mathbb R^{n_1} \times \mathbb R^{n_2})$ and in $\mathscr S'(\mathbb R^{n_1} \times \mathbb R^{n_2})$.- Full Text: PDF
- DOI:10.5539/jmr.v9n4p87
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org