Existence Conditions of Super-Replication Cost in a Multinomial Model
- Mei Xing
Abstract
This paper gives a theorem for the continuous time super-replication cost of European options in an unbounded multinomial market. An approximation multinomial scheme is put forward on a finite time interval [0,1] corresponding to a pure jump Lévy model with unbounded jumps. Under the assumption that the expected underlying stock price at time 1 is bounded, the limit of the sequence of the super-replication cost in a multinomial model is proved to be greater than or equal to an optimal control problem. Furthermore, it is discussed that the existence conditions of a super-replication cost and a liquidity premium for the multinomial model. This paper concentrates on a multinomial tree with unbounded jumps, which can be seen as an extension of the work of (Xing, 2015). The super-replication cost and the liquidity premium under the variance gamma model and the normal inverse Gaussian model are calculated and illustrated.
- Full Text: PDF
- DOI:10.5539/jmr.v9n4p185
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org