Products of Reflections and Triangularization of Bilinear Forms
- Jacques Helmstetter
Abstract
The present article is motivated by the theorem of Cartan-Dieudonn\'e which states that every orthogonal transformation is a product of reflections. Its purpose is to determine, for each orthogonal transformation, the minimal number of factors in a decomposition into a product of reflections, and to propose an effective algorithm giving such a decomposition. With the orthogonal transformations $g$ of a quadratic space $(V,q)$, it associates couples $(S,\phi)$ where $S$ is a subspace of $V$, and $\phi$ an non-degenerate bilinear form on $S$ such that $\phi(y,y)=q(y)$ for every $y$ in $S$. In general, the minimal decompositions of $g$ into a product of reflections correspond to the bases of $S$ in which the matrix of $\phi$ is lower triangular. Therefore, we need an algorithm of triangularization of bilinear forms. Affine isometries are also taken into consideration.
- Full Text: PDF
- DOI:10.5539/jmr.v9n2p18
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org