Multivariate Lagrange Interpolation at Sinc Points Error Estimation and Lebesgue Constant
- Maha Youssef
- Hany El-Sharkawy
- Gerd Baumann
Abstract
This paper gives an explicit construction of multivariate Lagrange interpolation at Sinc points. A nested operator formula for Lagrange interpolation over an $m$-dimensional region is introduced. For the nested Lagrange interpolation, a proof of the upper bound of the error is given showing that the error has an exponentially decaying behavior. For the uniform convergence the growth of the associated norms of the interpolation operator, i.e., the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature $O((log n)^m)$. We compare the obtained Lebesgue constant bound with other well known bounds for Lebesgue constants using different set of points.- Full Text: PDF
- DOI:10.5539/jmr.v8n4p118
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org