The Shift Invariant Discrete Wavelet Transform (SIDWT) with Inflation Time Series Application
- Suparti Suparti
- Rezzy Caraka
- Budi Warsito
- Hasbi Yasin
Abstract
Analysis of time series used in many areas, one of which is in the field economy. In this research using time series on inflation using Shift Invariant Discrete Wavelet Transform (SIDWT).Time series decomposition using transformation wavelet namely SIDWT with Haar filter and D4. Results of the transformation, coefficient of drag coefficient wavelet and scale that is used for modeling time series. Modeling done by using Multiscale Autoregressive (MAR). In a certain area, inflation to it is an important that he had made the standard-bearer of economic well-being of society, the factors Directors investors in selecting a kind of investment, and the determining factor for the government to formulate policy fiscal, monetary, as well as non-monetary that will be applied. Inflation can be analyzed using methods Shift Invariant Discrete Wavelet Transform (SIDWT) which had been modeled for them to use Mulitiscale Autoregressive (MAR) with the R2 value 93.62%.
- Full Text: PDF
- DOI:10.5539/jmr.v8n4p14
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org