The Proof for A Convergent Integral and Another Nonzero Integral--Respectively Using the Riemann Zeta Function and the Trigonometric Sums
- Hao-Cong Wu
Abstract
In this paper, there are the applications of the main inequalities, and show how to use the analytic properties of the Zeta function and the Laplace transform to prove the convergence of the desired integral. In addition, show how to use the trigonometric sums and the mathematical induction with the method of infinite descent to prove the non-zero value of another integral. In this way, we can obtain the important proofs concerning the Riemann Zeta function and the sum of two primes.- Full Text: PDF
- DOI:10.5539/jmr.v8n4p74
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org