A New Application Methodology of the Fourier Transform for Rational Approximation of the Complex Error Function
- S. Abrarov
- B. M. Quine
Abstract
This paper presents a new approach in application of the Fourier transform to the complex error function resulting in an efficient rational approximation. Specifically, the computational test shows that with only $17$ summation terms the obtained rational approximation of the complex error function provides accuracy ${10^{ - 15}}$ over the most domain of practical importance $0 \le x \le 40,000$ and ${10^{ - 4}} \le y \le {10^2}$ required for the HITRAN-based spectroscopic applications. Since the rational approximation does not contain trigonometric or exponential functions dependent upon the input parameters $x$ and $y$, it is rapid in computation. Such an example demonstrates that the considered methodology of the Fourier transform may be advantageous in practical applications.
- Full Text: PDF
- DOI:10.5539/jmr.v8n1p14
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org