Necessary and Sufficient Condition of Existence for the Quadrature Surfaces Free Boundary Problem
- Mohammed Barkatou
Abstract
Performing the shape derivative (Sokolowski and Zolesio, 1992) andusing the maximum principle, we show that the so-called Quadrature
Surfaces free boundary problem
\begin{equation*}
Q_S(f,k) \left\{
\begin{array}{l}
-\Delta u_{\Omega}=f \quad \text{in }\Omega\\
u_{\Omega}=0\text{ on }\partial \Omega\\
\left|
\nabla u_{\Omega }\right|=k \;(\text{constant})\text{ on }\partial
\Omega.
\end{array}
\right.
\end{equation*}
has a solution which contains strictly the support of $f$ if and
only if
$$\int_Cf(x)dx>k\int_{\partial C}d\sigma.$$ Where $C$ is the convex hull of the support of $f$. We also give a
necessary and sufficient condition of existence for the problem
$Q_S(f,k)$ where the term source $f$ is a uniform density supported
by a segment.
- Full Text: PDF
- DOI:10.5539/jmr.v2n4p93
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org