The Weight and Nonlinearity of 2-rotation Symmetric Cubic Boolean Function
- Hongli Liu
Abstract
The conceptions of $\chi$-value and K-rotation symmetric Boolean functions are introduced by Cusick. K-rotation symmetric Boolean functions are a special rotation symmetric functions, which are invariant under the $k-th$ power of $\rho$.In this paper, we discuss cubic 2-value 2-rotation symmetric Boolean function with $2n$ variables, which denoted by $F^{2n}(x^{2n})$. We give the recursive formula of weight of $F^{2n}(x^{2n})$, and prove that the weight of $F^{2n}(x^{2n})$ is the same as its nonlinearity.- Full Text: PDF
- DOI:10.5539/jmr.v7n2p187
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org