Bounds for the Perron Root of Irreducible Nonnegative Matrices
- Ping Liao
Abstract
Some bounds for the Perron root $\rho$ of positive matrices are proposed. We proved that$$\max_{1\leq i \leq n}{\bigg(\sum_{k}{a_{ik}m_{ki}} \bigg)} \leq \rho \leq \min_{1\leq i \leq n}{\bigg(\sum_{k}{a_{ik}M_{ki}} \bigg)}.$$where $$m_{ki}=\min_{t}{\frac {(\alpha_k,\beta_t)}{(\alpha_i,\beta_t)}}, M_{ki}=\max_{t}{\frac {(\alpha_k,\beta_t)}{(\alpha_i,\beta_t)}}$$and $\alpha_k$ denotes the $k$-th row of matrix $A$, $\beta_t$ the $t$-th column of $A$, $(\alpha_k,\beta_t)$ denotes the inner product of $\alpha_k$ and $\beta_t$.And these bounds can also be used to estimate the Perron root of nonnegative irreducible matrices.- Full Text: PDF
- DOI:10.5539/jmr.v7n1p97
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org