On the Calderon-Zygmund Theory for Nonlinear Parabolic Problems with Nonstandard Growth Condition
- Andre H. Erhardt
Abstract
We prove Calder\'on-Zygmund estimates for a class of parabolic problems whose model is the non-homogeneous parabolic $p(x,t)$-Laplacian equation\begin{align*}
\partial_t u-\text{div}\left(|Du|^{p(x,t)-2}Du\right)=f-\text{div}\left(|F|^{p(x,t)-2}F\right).
\end{align*}
More precisely, we will show that the spatial gradient $Du$ is as integrable as the inhomogeneities $f$ and $F$, i.e.
\begin{align*}
|F|^{p(x,t)},|f|^\frac{\gamma_1}{\gamma_1-1}\in L^q_\text{loc}~~~\Rightarrow~~~|F|^{p(x,t)}\in L^q_\text{loc}~~~\text{for any}~~~q>1,
\end{align*}
where $\gamma_1$ is the lower bound for $p(x,t)$. Moreover, it is possible to use this approach to establish the Calder\'on-Zygmund theory for parabolic obstacle problems with $p(x,t)$-growth.
- Full Text: PDF
- DOI:10.5539/jmr.v7n1p10
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org