On the Operator $\circledast^{k}$ Related to Heat Equation
- Wanchak Satsanit
- Amnuay Kananthai
Abstract
In this paper, we study the equation$$\frac{\partial}{\partial t}\,u(x,t)+c^2(-\circledast)^{k} u(x,t)=0 $$ with the initial condition
$$u(x,0)=f(x)$$
for $x\in\mathbb{R}^n$-the $n$-dimensional Euclidean space. The
operator $(\circledast)^{k} $ is operator iterated $k$ times ,
defined by
\begin{eqnarray*}
\circledast^{k}&=&\left(\left(\sum^{p}_{i=1}\frac{\partial^2}{\partial
x^2_i}\right)^{3}
+\left(\sum^{p+q}_{j=p+1}\frac{\partial^2}{\partial
x^2_j}\right)^{3}\right)^{k}\\
\end{eqnarray*}
$p+q=n$ is the dimension of the Euclidean space
$\mathbb{R}^n$, $u(x,t)$ is an unknown function for
$(x,t)=(x_1,x_2,\ldots,x_n,t)\in \mathbb{R}^n\times (0,\infty)$,
$f(x)$ is the given generalized function , $k$ is a positive integer
and $c$ is a positive constant. Moreover, if we put $q=0$ and
$k=1$we obtain the solution of equation.
$$\frac{\partial}{\partial
t}\,u(x,t)-c^2\triangle^3u(x,t)=0$$ Which is related to the
triharmonic heat equation.\\
- Full Text: PDF
- DOI:10.5539/jmr.v2n2p20
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org