On a High Dimensional Riemann's Removability Theorem
- Yukinobu Adachi
Abstract
Let $M$ be a (connected) complex manifold and $E$ be a closed capacity zero set. Let $X$ be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let $f$ be a holomorphic map of $M - E$ to $X$. Then $f$ can be extended holomorphically to a map of $M$ to $X$.- Full Text:
PDF
- DOI:10.5539/jmr.v6n3p8
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- MathGuide
- MathSciNet
- Open policy finder
- RePEc
- ResearchGate
- Scilit
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org