Master-Slave Algorithm for Highly Accurate and Rapid Computation of the Voigt/Complex Error Function
- S. Abrarov
- B. Quine
Abstract
We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential function ${e^{ - {{\left( {t - 2\sigma } \right)}^2}}}$ and present master-slave algorithm for its efficient computation. The error analysis shows that at $y > {10^{ - 5}}$ the computed values match with highly accurate references up to the last decimal digits. The common problem that occurs at $y \to 0$ is effectively resolved by main and supplementary approximations running computation flow in a master-slave mode. Since the proposed approximation is rational function, it can be implemented in a rapid algorithm.- Full Text: PDF
- DOI:10.5539/jmr.v6n2p104
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org