Picard Theorems for Keller Mappings in Dimension Two and the Phantom Curve
- Ronen Peretz
Abstract
Let $F=(P,Q)\in\mathbb{C}[X,Y]^{2}$ be a polynomial mapping over the complex field $\mathbb{C}$. Suppose that$$
\det\,J_{F}(X,Y):=\frac{\partial P}{\partial X}\frac{\partial Q}{\partial Y}-
\frac{\partial P}{\partial Y}\frac{\partial Q}{\partial X}=a\in\mathbb{C}^{\times}.
$$
A mapping that satisfies the assumptions above is called a Keller mapping. In this paper we estimate the size of the co-image of $F$. We give a sufficient condition for surjectivity of Keller mappings in terms of its Phantom curve. This curve is closely related to the asymptotic variety of $F$.
- Full Text: PDF
- DOI:10.5539/jmr.v6n1p53
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org