A Simple Proof of Silver's Theorem
- Pimpen Vejjajiva
- Athipat Thamrongthanyalak
Abstract
By using combinatorial properties of stationary sets, we give a
simple proof of some generalization of Silver's Theorem i.e. if
$\kappa$ is an uncountable regular cardinal such that
$\aleph_\kappa$ is a singular strong limit cardinal, then the
following hold.
(1). If $\{\alpha<\kappa : \aleph_\alpha^{<\kappa} \leq
\aleph_{\alpha\cdot2}\}$ is stationary, then $2^{\aleph_{\kappa}}
\leq \aleph_{\kappa\cdot2}$.
(2). If $\{\alpha<\kappa : \aleph_\alpha^{<\kappa} \leq
\aleph_{\alpha+\gamma}\}$, where $0<\gamma<\kappa$, is stationary,
then $2^{\aleph_{\kappa}} \leq \aleph_{\kappa+\gamma}$.
- Full Text: PDF
- DOI:10.5539/jmr.v2n2p81
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org