Discussing a More Fundamental Concept Than the Minimal Residual Method to Solve Linear System in a Krylov Subspace
- Chein-Shan Liu
Abstract
A more fundamental concept than the minimal residual method is proposed in this paper to solve an $n$-dimensional linear equations system ${\bf A}{\bf x}={\bf b}$ in an $m$-dimensional Krylov subspace. We maximize the orthogonal projection of ${\bf b}$ onto ${\bf y}$: $={\bf A}{\bf x}$. Then, we can prove that the maximal projection solution (MP) is better than that obtained by the least squares solution (LS) with $\|{\bf b}-{\bf A}{\bf x}_{\mbox{\scriptsize MP}}\|<\|{\bf b}-{\bf A}{\bf x}_{\mbox{\scriptsize LS}}\|$. Examples are discussed which confirm the above finding.- Full Text: PDF
- DOI:10.5539/jmr.v5n4p58
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org