The Existence of Positive Solutions to Kirchhoff Type Equations in $\mathbb{R}^{N}$ With Asymptotic Nonlinearity
- Hongyu Ye
- Fengli Yin
Abstract
In this paper, we are concerned with the following Kirchhoff problem$$\left\{%
\begin{array}{ll}\vspace{0.2cm}
\left(a+\lambda\int_{\mathbb{R}^N}(|\nabla u|^2+V(x)|u|^2)\right)[-\Delta u+V(x)u]=f(x,u), & \hbox{$x\in \mathbb{R}^N$},\\
u\in H^1(\mathbb{R}^N),~~~~u>0, & \hbox{$x\in \mathbb{R}^N$},
\end{array}%
\right.$$
where $N\geq3$, $a>0$ is a constant, $\lambda>0$ is a parameter, the potential $V(x)$ may not be radially symmetric and $f(x,s)$ is asymptotically linear with respect to $s$ at infinity. Under some assumptions on $V$ and $f$, we prove the existence of a positive solution for $\lambda$ small and the nonexistence result for $\lambda$ large.
- Full Text: PDF
- DOI:10.5539/jmr.v6n1p14
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org