On the Julia Directions of the Value Distribution of Nondegenerate Transendental Holomorphic Maps of $\mathbf{C}^2$ to $\mathbf{C}^2$
- Yukinobu Adachi
Abstract
We prove that for a nondegenerate holomorphic map $F=(f(x,y),g(x,y))$ of $\mathbf{C}^2$ to $\mathbf{C}^2$ where $f$ and $g$ are entire functions and $f$ is a transendental one, there exists a ray $J(\theta) = \{(x,y); x = te^{i\theta},y = kte^{i\theta} \ (0 \leqq t < \infty)\}$ where $k$ is an arbitrarily fixed complex number except some Lebesgue measure zero set and $\theta$ is some real number depending on value $k$, such that $F(x,kx)$, in any open cone in $\mathbf{C}^2$ with vertex $(0,0)$ containing the ray $J(\theta)$, does not omit any algebraic curve with three irreducible components in a general position.- Full Text: PDF
- DOI:10.5539/jmr.v5n3p8
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org