On $(2,t)$-Choosability of Triangle-Free Graphs
- Wongsakorn Charoenpanitseri
Abstract
A $(k,t)$-list assignment $L$ of a graph $G$ is a mapping which assigns a set of size $k$ to each vertex $v$ of $G$ and $|\bigcup_{v\in V(G)}L(v)|=t$. A graph $G$ is $(k,t)$-choosable if $G$ has a proper coloring $f$ such that $f(v)\in L(v)$ for each $(k,t)$-list assignment $L$.In 2011, Charoenpanitseri, Punnim and Uiyyasathian proved that every $n$-vertex graph is $(2,t)$-choosable for $t\geq 2n-3$ and every $n$-vertex graph containing a triangle is not $(2,t)$-choosability for $t\leq 2n-4$. Then a complete result on $(2,t)$-choosability of an $n$-vertex graph containing a triangle is revealed. Moreover, they showed that an $n$-vertex triangle-free graph is $(2,t)$-choosable for $t\geq 2n-6$.
In this paper, we first prove that an $n$-vertex graph containing $K_{3,3}-e$ is not $(2,t)$-choosable for $t\leq 2n-7$. Then we deeply investigates $(2,t)$-choosablity of an $n$-vertex graph containing neither a triangle nor $K_{3,3}-e$.
- Full Text: PDF
- DOI:10.5539/jmr.v5n3p11
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org