On the Relation between a Taut Manifold $X$ Modulo $\Delta_X$ and Hyperbolic Modulo $\Delta_X$ Which Is Contained in a Hypersurface of $X$
- Yukinobu Adachi
Abstract
Let $X$ be a n-dimensional Stein (connected complex) manifold or a compact one whose universal covering is a domain in $\mathbf{C}^n$ or a Stein manifold. Let $\Delta_X$ be the degeneration locus of Kobayashi pseudodistance of $X$ which is contained in a hypersurface $S$ of $X$. Then $X$ is hyperbolic modulo $S$ and taut modulo $S$.- Full Text: PDF
- DOI:10.5539/jmr.v5n2p39
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org