Note on the Rademacher-Walsh Polynomial Basis Functions
- Hamse Mussa
- Jonathan Tyzack
- Robert Glen
Abstract
Over the years, one of the methods of choice to estimate probability density functions for a given random variable (defined on binary input space) has been the expansion of the estimation function in Rademacher-Walsh Polynomial basis functions. For a set of $L$ features (often considered as an ``$L$-dimensional binary vector''), the Rademacher-Walsh Polynomial approach requires $2^{L}$ basis functions. This can quickly become computationally complicated and notationally clumsy to handle whenever the value of $L$ is large. In current pattern recognition applications it is often the case that the value of $L$ can be 100 or more.In this paper we show that the expansion of the probability density function estimation in Rademacher-Walsh Polynomial basis functions is equivalent to the expansion of the estimation function in a set of Dirac kernel functions. The latter approach is not only able to eloquently allay the computational bottle--neck and notational awkwardness mentioned above, but may also be naturally neater and more ``elegant'' than the Rademacher-Walsh Polynomial basis function approach even when this latter approach is computationally feasible.
- Full Text: PDF
- DOI:10.5539/jmr.v5n1p114
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org