On $FGS$-Modules
- Alhousseynou BA
- Oumar Diankha
Abstract
We consider $R$ a non-necessarily commutative ring with unity $1\neq 0$ and $M$ a module over $R$. By using the category $\sigma[M]$ we introduce the notion of $FGS$-module. The latter generalizes the notion of $FGS$-ring. In this paper we fix the ring $R$ and study $M$ for which every hopfian module of $\sigma[M]$ becomes finitely generated. These kinds of modules are said to be $FGS$-modules. Some properties of $FGS$-module, a characterization of semisimple $FGS$-module and of serial $FGS$-module over a duo ring have been obtained.- Full Text: PDF
- DOI:10.5539/jmr.v5n1p61
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org