A Complete Geometric Representation of Four-Player Weighted Voting Systems
- Zhengjia Jiang
Abstract
This paper seeks to expand voting power theory, a branch of game theory that applies to many important organizations. Typically, weighted voting systems are displayed using the algebraic representation, consisting of a quota and a weight vector. A newer idea, however, is the \emph{geometric representation}. This representation maps all normalized weighted voting systems onto a simplex and thus can be called a complete representation of weighted voting systems. The concept of the \emph{region}, sets of characteristically identical weighted voting systems, will be introduced, greatly simplifying the analysis of weighted voting systems. In this paper, four-player weighted voting systems are solved completely using the geometric representation. The geometric representation will be shown to be a useful alternative to the algebraic representation.- Full Text: PDF
- DOI:10.5539/jmr.v5n1p122
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org