Poly-Bergman Type Spaces on the Siegel Domain: Quasi-parabolic Case


  •  Carlos Gonzalez-Flores    
  •  Josue Ramirez    
  •  Armando Nungaray    

Abstract

We introduce poly-Bergman type spaces on the Siegel domain $D_n\subset \mathbb{C}^n$, and we prove that they are isomorphic to tensorial products of one-dimensional spaces generated by orthogonal polynomials of two kinds: Laguerre polynomials and Hermite type polynomials. The linear span of all poly-Bergman type spaces is dense in the Hilbert space $L^2(D_n,d\mu_{\lambda})$, where $d\mu_{\lambda}=(\im z_n - |z_1|^2-\cdots -|z_{n-1}|^2)^{\lambda}dx_1dy_1\cdots dx_n dy_n$, with $\lambda>-1$.


This work is licensed under a Creative Commons Attribution 4.0 License.