New Model of Binary Elliptic Curve
- Demba Sow
- Djiby Sow
Abstract
In our paper paper we propose a new binary elliptic curve of the form $a[x^2+y^2+xy+1]+(a+b)[x^2y+y^2x]=0$. If $m\geq 5$ we prove that each ordinary elliptic curve $y^{2}+xy=x^{3}+\alpha x^2+\beta, \beta\neq 0$ over $\mathbb{F}_{2^m}$, is birationally equivalent over $\mathbb{F}_{2^m}$ to our curve. This paper also presents the formulas for the group law.- Full Text: PDF
- DOI:10.5539/jmr.v4n6p34
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org