Optimal Control for a Stationary Population
- Ming Li
- Qing Xie
Abstract
As one of the most important achievements in nonlinear science, population system has drawn wide attention and extensive research in the past few decades. However, population control is a systematic social project with much complexity for the reason that it involves knowledge in many aspects, such as functional analysis, differential equations, partial differential equations, operator theory. Through initiating a series of groundbreaking work on the issue of population control in China, our scientific workers have made a lot of achievements, which are valuable in terms of theory and practice, in understanding and addressing this issue in a correct way.To conduct intensive research on the issue of optimal control is a right way to achieve that. They have made strict and detailed analysis to population system, whose results have a great influence on the family planning policy in China.
This paper starts from deducing the population equation and explaining its parameters meaning. Next, it gives the answer to a simple model. Based on stationary population model, this paper, considering population mortality and gaining factor (can only depend on age), gives its prediction to a more general case and tries to gain the optimal control towards population.
- Full Text: PDF
- DOI:10.5539/jmr.v4n4p140
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org