Peano Continua with Unique Symmetric Products
- David Herrera-Carrasco
- Fernando Macias-Romero
- Francisco Vazquez-Juarez
Abstract
Let $X$ be a metric continuum and $n$ a positive integer. Let $F_{n}(X)$ be the hyperspace of all nonempty subsets of $X$ with at most $n$ points, metrized by the Hausdorff metric. We said that $X$ has unique hyperspace $F_n(X)$ provided that, if $Y$ is a continuum and $F_n(X)$ is homeomorphic to $F_n(Y),$ then $X$ is homeomorphic to $Y.$ In this paper we study Peano continua $X$ that have unique hyperspace $F_n(X)$, for each $n\geq 4.$ Our result generalize all the previous known results on this subject.- Full Text: PDF
- DOI:10.5539/jmr.v4n4p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org