Some Inequalities and Asymptotics for a Weighted Alternate Binomial Sum
- J. C. S. de Miranda
Abstract
We establish strict inequality bounds for the binomial sums $\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1}$ and prove the asymptotic result: $$\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1} \sim \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{2n+1}}, \mbox{ as } n\to \infty.$$- Full Text: PDF
- DOI:10.5539/jmr.v4n3p61
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org