Some Inequalities and Asymptotics for a Weighted Alternate Binomial Sum


  •  J. C. S. de Miranda    

Abstract

We establish strict inequality bounds for the binomial sums $\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1}$ and prove the asymptotic result: $$\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1} \sim \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{2n+1}}, \mbox{ as } n\to \infty.$$


This work is licensed under a Creative Commons Attribution 4.0 License.