Nathanson Heights and the CSS Conjecture for Cayley Graphs
- Yotsanan Meemark
- Chaiwat Pinthubthaworn
Abstract
Let G be a finite directed graph, \beta(G) the minimum size of a subset X of edges such that the graph G'=(V, E / X) is directed acyclic and \gamma(G) the number of pairs of nonadjacent vertices in the undirected graph
obtained from G by replacing each directed edge with an undirected edge. Chudnovsky, Seymour and Sullivan
proved that if G is triangle-free, then \beta(G)\leq\gamma(G). They conjectured a sharper bound (so called the “CSS conjecture”) that \beta(G)\leq\gamma(G)/2. Nathanson and Sullivan verified this conjecture for the directed Cayley
graph Cay(Z/NZ, EA) whose vertex set is the additive group Z/NZ and whose edge set EA is determined by
EA = {(x, x +a) : x \in Z/NZ, a \in A} when N is prime and |A| \leq (N -1)/4 by introducing “height”. In this work,
we extend the definition of height and apply to answer the CSS conjecture for Cay(Z/NZ, EA) to any positive
integer N and |A|\leq (N-1)/4.
- Full Text: PDF
- DOI:10.5539/jmr.v1n1p3
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org