A Generalized Version of the Earle-Hamilton Fixed Point Theorem for the Hilbert Ball
- David Shoikhet
Abstract
Let $D$ be a bounded domain in a complex Banach space. According to the Earle-Hamilton fixed point theorem, if a holomorphic mapping $F: D \mapsto D$ maps $D$ strictly into itself, then it has a unique fixed point and its iterates converge to this fixed point locally uniformly. Now let $\mathcal{B}$ be the open unit ball in a complex Hilbert space and let $F : \mathcal{B} \mapsto \mathcal{B}$ be holomorphic. We show that a similar conclusion holds even if the image $F(\mathcal{B})$ is not strictly inside $\mathcal{B}$, but is contained in a horosphere internally tangent to the boundary of $\mathcal{B}$. This geometric condition is equivalent to the fact that $F$ is asymptotically strongly nonexpansive with respect to the hyperbolic metric in $\mathcal{B}$.- Full Text: PDF
- DOI:10.5539/jmr.v4n2p45
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org