($\bar{\alpha}$, $\bar{\beta}$)-fuzzy Congruence Relation on Lattice Implication Algebras
- Bin Xu
Abstract
After ($\alpha$, $\beta$)-fuzzy congruence relation, ($\overline{\alpha}$, $\overline{\beta}$)-fuzzy congruence relation on lattice implication algebras is further investigated and it's properties is discussed, where $\overline{\alpha},\overline{\beta}\in\{\overline{\in_{h}},\overline{q_{\delta}},\overline{\in_{h}}\vee \overline{q_{\delta}},\overline{\in_{h}}\wedge \overline{q_{\delta}}\}$ but $\overline{\alpha}\neq \overline{\in_{h}}\wedge \overline{q_{\delta}}$. Specially, $(\overline{\in_{h}},\overline{\in_{h}}\vee \overline{q_{\delta}})$-fuzzy congruence relation is mainly investigate,which is generalization of $(\overline{\in},\overline{\in}\vee \overline{q})$-fuzzy congruence relation. Some characterizations for an ($\overline{\alpha}$, $\overline{\beta}$)-fuzzy congruence relation on $\mathscr{L}$ to be a congruence and a fuzzy congruence on $\mathscr{L}$ are derived.- Full Text: PDF
- DOI:10.5539/jmr.v4n3p44
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org