A Method for Solving Legendre's Conjecture
- Hashem Sazegar
Abstract
Legendre's conjecture states that there is a prime number between $n^2$ and $(n+1)^2$ for every positive integer $n$.
In this paper we prove that every composite number between $n^2$ and $(n+1)^2$ can be written $u^2-v^2$ or $u^2-v^2+u-v$ that $u>0$ and $v\geq 0$. Using these result as well as induction and residues $(modq)$ we prove Legendre's conjecture.
- Full Text: PDF
- DOI:10.5539/jmr.v4n1p121
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org