Existence of Solutions of a Periodic Problem With a Function Φ Continuous on Dom(φ) ⊂ R
- Konan Charles Etienne Goli
Abstract
We study the existence of solutions of equation \[(\phi(w'(\tau)))'= f(\tau,w(\tau),w'(\tau)),\quad \tau\in [0,\ell]\] submitted to periodic boundary conditions on $[0,\ell]$. Where $f:[0,\ell]\time \mathbb{R}^{2}\rightarrow \mathbb{R}$ is a continuous function and $\phi:Dom(\phi)\subset\mathbb{R}\rightarrow \mathbb{R}$ is considered as a continuous function on $Dom(\phi)\subse \mathbb{R}$ and strictly increasing on $[a,b]\subset Dom(\phi)$ with $0\in[a,b]$ and $a<b$. We show the existence of at least one solution using: firstly, lower and upper solutions method; secondly, some sign conditions; and thirdly, a combination of lower and upper solutions and sign conditions. No Nagumo condition for the dependence of $f(\tau,u,v)$ with respect to $v$ is required.
- Full Text:
PDF
- DOI:10.5539/jmr.v17n5p32
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- MathGuide
- MathSciNet
- Open policy finder
- RePEc
- ResearchGate
- Scilit
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org