On Some Properties of Solutions Diffusion Equations on Networks
- Kouame Beranger Edja
- Euloge Francois Kouame
- Kouassi Jean Gnin
Abstract
In this paper, we study some qualitative properties related to Semi-linear Volterra Diffusion Equations on networks $$u_t(x,t)=\Delta_{\omega}u(x,t)+\int_0^t k(t-\tau)|u|^{p-1}(x,\tau)u(x,\tau)d\tau$$ where $\Delta _{\omega}$ is called the discrete weighted Laplacian operator. Under some appropriate hypotheses, we prove the existence and uniqueness of the local solution via Banach fixed point theorem. Besides, we provide several types of the maximum principles to this equation. We also show that the solution of the problem blow-up in a finite time. Finally, we verify our results through some numerical examples.
- Full Text:
PDF
- DOI:10.5539/jmr.v17n4p63
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- MathGuide
- MathSciNet
- Open policy finder
- RePEc
- ResearchGate
- Scilit
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org