Non-Imaginary unit Circle and Distribution Odd Natural Numbers


  •  Shaimaa said soltan    

Abstract

This paper introduces a non-Imaginary unit circle partitioning as proof for the distribution of odd natural numbers in relation to an imaginary unit circle in a complex plane. First, we will introduce the concept of a non-imaginary unit circle and its relation to an imaginary unit circle in a complex plane. Then we will go through some examples to prove that for any N odd natural number at N/2, we only have the imaginary part for any complex number on the complex plane if we use our technique of portioning for the non-imaginary unit circle.



This work is licensed under a Creative Commons Attribution 4.0 License.