Correlation Functions of Quantum Toroidal gln Algebra
- Hao Cui
Abstract
In this paper, we study the correlation functions of the quantum toroidal \mathfrak{gl}_n algebra. Their first key properties are established in analogy to those of the correlation functions of quantum affine algebras U_q\mathfrak{n}_+. The core of the paper is the proof of the vanishing of those correlation functions at length 3 wheel conditions, which is done separately for n = 1, n = 2, n≥ 3 cases with different ``Master Equalities" of formal series (the n = 1 case has been previously discussed by the author in (Cui, 2021)). Another important contribution is the discovery of cubic Serre relations for the quantum toroidal.
- Full Text: PDF
- DOI:10.5539/jmr.v14n4p94
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org