Lp-Adaptive Estimation Under Partially Linear Constraint in Regression Model
- Kouame Florent Kouakou
- Armel Fabrice Evrard Yode
Abstract
We study the problem of multivariate estimation in the nonparametric regression model with random design. We assume that the regression function to be estimated possesses partially linear structure, where parametric and nonparametric components are both unknown. Based on Goldenshulger and Lepski methodology, we propose estimation procedure that adapts to the smoothness of the nonparametric component, by selecting from a family of specific kernel estimators. We establish a global oracle inequality (under the Lp-norm, 1≤p<1) and examine its performance over the anisotropic H¨older space.
- Full Text: PDF
- DOI:10.5539/jmr.v12n6p74
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org