On a New Optimization Method With Constraints
- Bouchta RHANIZAR
Abstract
We consider the constrained optimization problem defined by:
$$f(x^*) = \min_{x \in X} f(x) \eqno (1)$$
where the function $f$ : $ \pmb{\mathbb{R}}^{n} \longrightarrow \pmb{\mathbb{R}}$ is convex on a closed convex set X.
In this work, we will give a new method to solve problem (1) without bringing it back to an unconstrained problem. We study the convergence of this new method and give numerical examples.
- Full Text: PDF
- DOI:10.5539/jmr.v12n5p27
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org