The Secret of the Titius-Bode Law: A New Theory on How Our Planetary System Came Into Existence
- Hans Merkl
Abstract
Our planetary system still has several unsolved riddles. One of them is the Titius-Bode law. With the aid of this law, it is easy to find the distances of planets from the sun. For many astronomers, this is coincidence. They argue that there is no known physical mechanism that generates a particular sequence of planets’ distances. However, if one investigates the structure of the law, it quickly becomes clear that the Titius-Bode law is directly connected with the formation of planets. Our planets did not come into existence through so-called accretion. At the beginning of its existence, the sun was presumably a T-Tauri star. These are young stars in the process of their formation. They pulsate irregularly, thereby accelerating clouds of plasma in the surrounding dust disk. Each of these eruptions thus generated a planet. This of course goes much more quickly than if they had to be formed from the dust of planetary disks. This new theory not only describes how the planets and the distances of the planets came into existence. It also gives a new description of how the moon came into existence, the cause for large moon craters, the slow rotation of Venus, the formation of the asteroid belt, the high iron content of the planet Mercury, and the sun’s loss of rotational impulse, among other things.
- Full Text: PDF
- DOI:10.5539/jgg.v11n4p58
Journal Metrics
(The data was calculated based on Google Scholar Citations)
Google-based Impact Factor (2018): 11.90
h-index (January 2018): 17
i10-index (January 2018): 36
h5-index (January 2018): 13
h5-median(January 2018): 15
Index
- BASE (Bielefeld Academic Search Engine)
- Bibliography and Index of Geology
- CiteFactor
- CNKI Scholar
- Educational Research Abstracts
- Excellence in Research for Australia (ERA)
- GeoRef
- Google Scholar
- LOCKSS
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- Lesley LuoEditorial Assistant
- jgg@ccsenet.org