Ellagic Acid May Improve Mechanical and Barrier Properties in Films of Starch-A Review Paper

  •  J. M. Tirado-Gallegos    
  •  D. R. Sepúlveda-Ahumada    
  •  P. Zamudio-Flores    
  •  M. L. Rodríguez-Marin    
  •  F. Hernández-Centeno    
  •  V. Espinosa-Solis    
  •  R. Salgado-Delgado    


Packaging increases the shelf life of food and facilitates its handling, transportation and marketing. The main packaging materials are plastics derived from petroleum, but their accumulation has given rise to environmental problems. An alternative is the use of biodegradable materials. In this regard, starch is an excellent choice because it is an abundant and renewable source with film-forming properties. However, the films obtained from starch have some limitations with respect to their mechanical and barrier properties. Several strategies have been developed in order to improve these limitations, ranging from the addition of lipids to the modification of the polymer structure. The aim of this review was propose the use of ellagic acid as a cross-linking agent that may improves the mechanical and barrier properties in films based on exists reports that phenolic compounds interact with starch-based materials decreasing their rate of retrogradation. Furthermore, ellagic acid is a powerful natural antioxidant, which would allow the production of active packaging with antioxidant properties, in addition to the improvement of the mechanical and barrier properties of starch films. In this concern more studies such as Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis are necessary to verify the structural changes and interactions between starch and ellagic acid. We expect extensive use of it in the future of packaging materials.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0887
  • ISSN(Online): 1927-0895
  • Started: 2012
  • Frequency: quarterly

Journal Metrics

Google-based Impact Factor (2021): 0.74

h-index (December 2021): 35

i10-index (December 2021): 208

h5-index (December 2021): 42 

h5-median(December 2021): 53

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )