Kenaf (Hibiscus cannabinus) and Cowpea (Vigna unguiculata) as Sugarcane Cover Crops


  •  Charles Webber III    
  •  Paul White Jr.    
  •  Caleb Dalley    
  •  Eric Petrie    
  •  Ryan Viator    
  •  James Shrefler    

Abstract

A Louisiana sugarcane field is typically replanted every four years due to declining yields, and, although, it is a costly process, it is both necessary and an opportunity to maximize the financial return during the next four year cropping cycle. Fallow planting systems (FPS) during the fallow period prior to replanting sugarcane have the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. A 2 year experiment was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impact of unique FPS on sugarcane production. The experiment included seven treatments; two cover crops, kenaf (Hibiscus cannabinus L.) and cowpeas (Vigna unguiculata L. Walp.), three FPS harvest treatments for each FPS crop, and a control. The experiment had four replications. Kenaf was selected as a potential cover crop due to interest in its commercial by-products and cowpea was selected due to its potential to facilitate climate friendly soils. The kenaf and cowpeas were planted on 8 May 2013. The three FPS harvest treatments included the removal of the FPS crop at 50 days after planting (DAP), the removal of the harvested FPS crop at 100 DAP, and lastly, cutting the FPS crop at 100 DAP and incorporating the plant material into the soil prior to sugarcane planting. The control treatment did not have a cover crop. Unlike kenaf, the cowpea leaf, fresh and dry weight yields (50 DAP), 19.4 and 2.5 mt/ha, respectively, decreased to 17.0 and 2.4 mt/ha (100 DAP). Although the sugarcane total recoverable sucrose (TRS) (kg/mt) was greater with the kenaf cover-crop treatment 50 DAP (120 kg/mt) compared to the cowpea treatment 50 DAP (111 kg/mt) and the cowpea 100 DAP with the residue incorporated (112 kg/ha), none of the FPS crop treatments were significantly better or worse than the control (no cover crop). The average values for the sugarcane production factors across all treatments were 95,700 stalks/ha (millable stalks), 112 mt/ha (sugarcane yield), 114 kg/mt (sugar yield per metric ton of sugarcane), and 12,841 kg/ha (sugar yield per hectare). The results demonstrate the potential use of these alternative cover crops during the fallow period prior to planting sugarcane without adversely affecting the plant cane yields.



This work is licensed under a Creative Commons Attribution 4.0 License.