Confirmation of Cage Effect and Prebiotic Production Potential of a β-Mannanase, with SBM as Substrate Using Microscopy and Wet Chemistry


  •  L. M. Gomez-Osorio    
  •  Hwa Gyun Oh    
  •  Jung Jin Lee    

Abstract

In vitro assays were carried out to investigate the solubilization of cell walls and generation of mannan oligosaccharides of a b-mannanase-containing commercial product on SBM. Using commercial dosages of the b-mannanase (500 g per ton of feed) cell wall degradation of mannan in SBM cell walls was visualized and an increase in reducing ends (0.12±0.02 mg/mL) and the generation of mannan oligosaccharides of degree of polymerization 2 and 4 (22.9±3.2 mg/L and 398.8±25.4 mg/L) were also measured using HPLC. Mannan, which is H-bonded to cellulose and xyloglucan, was solubilized using a single monocomponent enzyme, allowing for visualization of the disintegration of the entire SBM cell wall structure. This work is the first of its kind using strictly commercial dosage levels of enzyme for evaluating efficacy of the same microscopically. These data confirm the hypothesis that there most likely is a need for only a single relevant NSP enzyme targeting its specific substrate, independent of the concentration of the latter within the complex polysaccharide matrix in the plant cell wall to experience the beneficial effects of the enzyme both in vitro and in vivo. An analogy to compare our data would be destruction of the foundation (mannan) of a building or a bridge (soybean cell wall) which would inevitably lead to dismantling or demolition the entire building or bridge.



This work is licensed under a Creative Commons Attribution 4.0 License.